
Koen Hindriks In Control of Autonomous Decision Systems

In Control of
Autonomous Decision Systems

Koen Hindriks
Delft University of Technology, The Netherlands

9-9-2015 @ DTU

Language Design for Cognitive Agents and Artificial Intelligence

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Outline

• First Step: Agent Programming

• Second Step: Building on Top of KRTs

• Third Step: Towards AI Programming

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

First Step: Agent Programming

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

The Shaping of
the Agent-Oriented Mindset

EMAS14 audience listed the following key concepts:

• autonomy

• rational

• goal-directedness

• interaction

• social

• reactive/events

• environment

• robustness

• decentralization

• Intentional stance

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Engineering Approaches?
Theories of intelligent agents: How do
the various components of an agent's
cognitive makeup conspire to
produce rational behaviour?

Architectures for intelligent agents:
What structure should an artificial
intelligent agent have?

Languages for intelligent agents:
What are the right primitives for
programming an intelligent agent?

intentions
time, desires, beliefs, goals
situated automata
logical models of agents
executing agent specs
(bounded) rationality

deliberative architectures
reactive architectures
hybrid architectures

agent spec languages
agent-oriented paradigm
non-logical agent languages
agent-based computing

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Illustrative Architecture: InteRRaP
• Layered architectures, e.g., InteRRaP agent model:

• dMARS architecture (MAS extension of PRS)
• Early work on coordination & organizations

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Evolution of Programming

 Organisation-based design
 Agent-oriented programming (AOP)

 Object-oriented languages (OOP)
Knowledge-oriented languages (KR)

Procedural languages
Assembler

Machine language

ab
st

ra
ct

io
n

time

e.g. GOAL

e.g. Prolog

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Programming with Mental States

Cognitive Agent

event action

Mental state

goals beliefs

Environment

e.g., or

Agent program

decision rules

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Many Agent Programming Languages

Space of Agents

Operational Logical

PRS

InteRRap

JADE

AgentSpeak

3APL

ConGolog
BRP

GOAL

BDI Logic

Intention Logic

KARO

CASL TEAMCORE

dMARS

The landscape of agent frameworks presented and introduced @ATAL.
Includes operational agent languages and logical models.

In a sense this landscape defines a space of agents that
can be created (and thus a corresponding mindset).

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

How are these APLs related?

AGENT-01
(PLACA)

Basic concepts: beliefs, action, plans, goals-to-do

AgentSpeak(L), Jason2

Golog 3APL3 ＝

1 mainly interesting from a historical point of view
2 from a conceptual point of view, we identify AgentSpeak(L) and Jason
3 without practical reasoning rules

Main addition: Declarative goals

2APL ≈ 3APL + GOAL

A comparison from a high-level, conceptual point, not taking into account
any practical aspects (IDE, available docs, speed, applications, etc)

Java-based Cognitive Agent Languages

AF-APL, JACK (commercial), Jadex, Jazzyk

Mobile Agents

CLAIM

Logic Programming

METATEM

Families of
Languages

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Blocks World Toy Example

Introducing GOAL

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

The Blocks World

• Positioning of blocks on table is not relevant.
• A block can be moved only if it there is no other block on top of it.

Objective: Move blocks in initial state such that result is goal state.

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Representing the Initial State
Using the on(X,Y) predicate we can represent the initial state.

beliefs{
 on(a,b).
 on(b,c).
 on(c,table).
 on(d,e).
 on(e,table).
 on(f,g).
 on(g,table).
}

Initial belief base of agent

Prolog

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Domain Knowledge
• Domain knowledge is added to the knowledge base.

tower([X]) :- on(X,table).
tower([X,Y|T]) :- on(X,Y),tower([Y|T]).
clear(X) :- block(X), not(on(Y,X)).
clear(table).

knowledge{
 clear(X) :- not(on(_,X)).
 clear(table).
 tower([X]) :- on(X,table).
 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
}

Static knowledge base of agent

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Representing the Goal State
Using the on(X,Y) predicate we can represent the goal state.

goals{
 on(a,e),
 on(b,table),
 on(c,table),
 on(d,c),
 on(e,b),
 on(f,d),
 on(g,table).
}

Initial goal base of agent

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Mental State of Agent

knowledge{
 clear(X) :- not(on(_,X)).
 clear(table).
 tower([X]) :- on(X,table).
 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
}
beliefs{
 on(a,b). on(b,c). on(c,table). on(d,e). on(e,table).
 on(f,g). on(g,table).
}
goals{
 on(a,e), on(b,table), on(c,table), on(d,c), on(e,b),
 on(f,d), on(g,table).
}

The knowledge, belief, and goal sections together constitute the
specification of the mental state of the agent.

Initial mental state of agent

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Inspecting the Belief Base
• bel(ϕ) succeeds if ϕ follows from the belief base

in combination with the knowledge base.

• Example:

– bel(clear(a), not(on(a,c))) succeeds

knowledge{
 clear(X) :- not(on(_,X)).
 clear(table).
 tower([X]) :- on(X,table).
 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
}
beliefs{
 on(a,b). on(b,c). on(c,table). on(d,e). on(e,table).
 on(f,g). on(g,table).
}

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Combining Beliefs and Goals
• Achievement goals:

 a-goal(ϕ) = goal(ϕ), not(bel(ϕ))

• Useful to express that a block X is misplaced:
 goal(tower([X|T])),not(bel(tower([X|T]))).

• A misplaced block is an achievement goal:
 a-goal(tower([X|T])).

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Actions Change the Environment…

move(a,d)

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Selecting Actions: Action Rules
• Action rules are used to define a strategy for

action selection.
• Defining a strategy for blocks world:

– If constructive move can be made, make it.
– If block is misplaced, move it to table.

• What happens:

– Check condition, e.g. can a-goal(tower([X|T]))be derived given
current mental state of agent?

– Yes, then (potentially) select move(X,table).

program{
 if bel(tower([Y|T])), a-goal(tower([X,Y|T])) then move(X,Y).
 if a-goal(tower([X|T])) then move(X,table).
}

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Underspecified Programs

d

b

Initial state

c
c

b

a

Goal state

a

d

Move block a or b to
table?

• Action rules may allow multiple choices of action
• Agent programs underspecify
• GOAL agent picks option randomly
• Useful for, e.g., optimizing using machine learning

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

An Agent is a Set of Modules
Built-in modules:
• init module:

– Define global knowledge
– Define initial beliefs & goals
– Process “send once” percepts
– Specify environment actions

• main module
– Action selection strategy

• event module
– Process percepts
– Process messages
– Goal management

User-defined modules.

init module{
 knowledge{
 …
 }
 beliefs{
 %%% INITIAL BELIEFS ONLY IN INIT MODULE %%%
 }
 goals{
 …
 }
 program{
 %%% PROCESS “SEND ONCE” PERCEPTS HERE %%%
 }
 actionspec{
 %%% SPECIFY ENVIRONMENT ACTIONS HERE %%%
 }
}

main module{
 % OPTIONAL knowledge section
 % NO beliefs section HERE!
 % OPTIONAL goal section (not advised in ‘main’)
 program{
 %%% ENVIRONMENT ACTION SELECTION HERE %%%
 }
}

event module{
 program{
 %%% PROCESS PERCEPTS HERE %%%
 %%% PROCESS MESSAGES HERE %%%
 %%% PERFORM GOAL MANAGEMENT HERE %%%
 }
}

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Example Agent Program
init module{
 knowledge{
 clear(X) :- not(on(_,X)). clear(table).
 tower([X]) :- on(X,table). tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
 }
 beliefs{
 on(a,b). on(b,c). on(c,table). on(d,e). on(e,table). on(f,g). on(g,table).
 }
 goals{
 on(a,e), on(b,table), on(c,table), on(d,c), on(e,b), on(f,d), on(g,table).
 }
 actionspec{
 move(X, Y) { pre { clear(X), clear(Y), on(X,Z) } post { not(on(X,Z)), on(X,Y) } }
 }
}

main module{
 program{
 if bel(tower([Y|T])), a-goal(tower([X,Y|T])) then move(X,Y).
 if a-goal(tower([X|T])) then move(X, table).
 }
}

event module{
 …
}

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

An Agent is a Set of Modules
Built-in modules:
• init module:

– Define global knowledge
– Define initial beliefs & goals
– Process “send once” percepts
– Specify environment actions

• main module
– Action selection strategy

• event module
– Process percepts
– Process messages
– Goal management

User-defined modules.

init module{
 knowledge{
 …
 }
 beliefs{
 %%% INITIAL BELIEFS ONLY IN INIT MODULE %%%
 }
 goals{
 …
 }
 program{
 %%% PROCESS “SEND ONCE” PERCEPTS HERE %%%
 }
 actionspec{
 %%% SPECIFY ENVIRONMENT ACTIONS HERE %%%
 }
}

main module{
 % OPTIONAL knowledge section
 % NO beliefs section HERE!
 % OPTIONAL goal section (not advised in ‘main’)
 program{
 %%% ENVIRONMENT ACTION SELECTION HERE %%%
 }
}

event module{
 program{
 %%% PROCESS PERCEPTS HERE %%%
 %%% PROCESS MESSAGES HERE %%%
 %%% PERFORM GOAL MANAGEMENT HERE %%%
 }
}

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

A Tooling Perspective on Agents
Developing and running an agent requires a set of different components

Agent (MAS)

Reasoner
(KRT) Editor/

Parser Interpreter

Debugger

Middleware

Environment

Verifier
(e.g., MC)

https://github.com/eishub

https://github.com/goalhub

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Second Step: Building on Top of KRTs

Building on top of existing Knowledge Representation Technologies

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

No Commitment to KRT
• As a design principle, the GOAL language does not

commit to any KRT in particular.

• Initially, built on top of Prolog.
• Now:

– also OWL available, and
– a generic interface to enable flexible switching between

KRTs has been developed.

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Layered Language

KR Language,
e.g., Prolog, OWL

Agent Language

program{
 if bel(clear(Y)), a-goal(clear(Z)) then delete(fact) + adopt(fact).
 ….
}

Database
(beliefs)

Database
(goals)

update update

query
query

clear(X) :- not(on(_,X)).
clear(table).

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Semantic Abstraction of KRT

Abstract definition of KRT:

A KR Technology is a 4-tuple:
 〈L,╞, Ο, Ο〉 where:

– L is a knowledge representation language,
– ╞ is an inference relation,
– Ο is an expansion and Ο a contraction operator.

+ -

- +

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Mental State
• A mental state of agent is a triple 〈K, Σ, Γ〉 where

– K⊆L is the knowledge base of the agent,
– Σ⊆L is the belief base of the agent, and
– Γ ⊆L is the goal base of the agent.

 Mental state satisfies rationality constraints:
Consistency of knowledge and beliefs:
– K∪Σ must be consistent, i.e. it is not the case that K∪ Σ╞⊥.
Consistency of individual goals with knowledge:
– Individual goals γ∈Γ must be consistent, i.e. not K∪{γ}╞⊥.
Goals are rational with respect to beliefs:
– Goals γ∈Γ are not believed to be true, i.e. not K∪ Σ╞ γ.

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Mental State Conditions
• A mental state condition is a Boolean combination of
bel(φ) and goal(φ) expressions.

• Example: bel(φ), not(goal(φ))

• The semantics of a mental state condition ψ is

defined on mental states m=〈K, Σ, Γ〉 by:
– m╞ bel(φ) iff K ∪ Σ ╞ φ
– m╞ goal(φ) iff there is a γ∈Γ: K∪ {γ}╞ φ
– m╞ ψ1∧ ψ2 iff m╞ ψ1 and m╞ ψ2

– m╞ ¬ ψ iff not: m╞ ψ

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

KRT Interface

KR Language,
e.g., Prolog,
OWL, PDDL, …

Agent Language

program{
 if bel(clear(Y)), a-goal(clear(Z)) then delete(fact) + adopt(fact).
 ….
}

Database
(beliefs)

Database
(goals)

update update

query
query

clear(X) :- not(on(_,X)).
clear(table).

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Interface: Language Abstraction

Assumes any KR language element can be mapped onto one of the following categories:

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Interface: Functional Support

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Embedded KR Languages

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Agent Program using Prolog
init module{
 knowledge{
 clear(X) :- not(on(_,X)). clear(table).
 tower([X]) :- on(X,table). tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
 }
 beliefs{
 on(a,b). on(b,c). on(c,table). on(d,e). on(e,table). on(f,g). on(g,table).
 }
 goals{
 on(a,e), on(b,table), on(c,table), on(d,c), on(e,b), on(f,d), on(g,table).
 }
 actionspec{
 move(X, Y) { pre { clear(X), clear(Y), on(X,Z) } post { not(on(X,Z)), on(X,Y) } }
 }
}

main module{
 program{
 if bel(tower([Y|T])), a-goal(tower([X,Y|T])) then move(X,Y).
 if a-goal(tower([X|T])) then move(X, table).
 }
}

event module{
 …
}

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

From Prolog to PDDL (1/4)
knowledge{
 clear(X) :- not(on(_,X)). clear(table).
 tower([X]) :- on(X,table). tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
}
beliefs{
 on(a,b). on(b,c). on(c,table). on(d,e). on(e,table). on(f,g). on(g,table).
}
goals{
 on(a,e), on(b,table), on(c,table), on(d,c), on(e,b), on(f,d), on(g,table).
}

knowledge{
 (impl (not (on ?z ?x)) (clear ?x)) (clear table).
 (impl (on ?x table) (tower([?x])) …
}
beliefs{
 (on a b) (on b c) (on c table) (on d e) (on e table) (on f g) (on g table)
}
goals{
 (and (on a e) (on b table) (on c table) (on d c) (on e b) (on f d)
 (on g table))
}

Prolog

PDDL

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

From Prolog to PDDL (2/4)
init module{
 …
 actionspec{
 move(X, Y) {
 pre { clear(X), clear(Y), on(X,Z) }
 post { not(on(X,Z)), on(X,Y) }
 }
 }
}

Prolog

init module{
 …
 actionspec{
 move(?x ?y) {
 pre { (and (clear ?x) (clear ?y) (on ?x ?z)) }
 post { (and (not (on ?x ?x)) (on ?x ?y)) }
 }
 }
}

PDDL

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

From Prolog to PDDL (3/4)
main module{
 program{
 if bel(tower([Y|T])), a-goal(tower([X,Y|T])) then move(X,Y).
 if a-goal(tower([X|T])) then move(X, table).
 }
}

main module{
 program{
 if bel((tower [?y|?t])), a-goal((tower [?x,?y|?t])) then move(?x ?y).
 if a-goal((tower [?x|?t])) then move(?x table).
 }
}

Prolog

PDDL

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

From Prolog to PDDL (4/4)
main module{
 program{
 if bel(tower([Y|T])), a-goal(tower([X,Y|T])) then move(X,Y).
 if a-goal(tower([X|T])) then move(X, table).
 }
}

main module{
 program{
 if (and (bel (tower [?y|?t])) (a-goal (tower [?x,?y|?t]))) then move(?x ?y).
 if a-goal((tower [?x|?t])) then move(?x table).
 }
}

Prolog

PDDL

Adapt grammar as much to style of KR as possible?

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Future Work
Extend with other KRTs:
• SQL (Datalog)
• PDDL (Planning)
• ASP (Answer Set Programming)
• Bayesian Networks (probabilistic)
• Fuzzy Logic
• …

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Third Step: AI Programming

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

AI Programs

The third challenge is to continuously extend
the capabilities of a programming language

for decision making to allow for the
development of ever more sophisticated

systems, i.e., how to integrate
sophisticated AI techniques.

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Increasing Demand for AI
• McKinsey: by 2025, machines will be able to learn, adjust,

exercise judgment, and reprogram themselves

• Made possible by sophisticated AI techniques for:
reasoning, planning, learning, and decision making

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

The Next Generation AI Engineers

… will need to develop complex
intelligent and autonomous
decision-making systems

… apply complex AI techniques:
• automated reasoning
• machine learning
• automated planning
• …

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

The Next Generation AI Engineers

AI is going to make life easier for us…

…. only if we make life easier for AI engineers.

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

A New AI Programming Language

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Cognitive Modules as Building Blocks

My aim is to design a new high-level AI programming
language for autonomous decision systems that
provides AI algorithms as basic building blocks.

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Programming with Cognitive Modules

Cognitive Module

action

State components

goals beliefs

Rule-based core language

decision rules

Artificial Intelligence

learning planning

events

rewards …

State not fixed, but
components defined as
needed

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Cognitive Modules and Planning

GOAL
• Knowledge

• Beliefs

• Goals

• Program Section

• Action Specification

Planning
• Axioms

• (Initial) state

• Goal description

• x

• Plan operators

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

An Example:
Integrating Reinforcement Learning (RL)

Requires expert knowledge of RL theory:
1. Create state and action representation
2. Design action selection mechanism
3. Design reward function
4. Choose update mechanism, e.g., Q-learning, prioritised sweeping, …
5. Convergence analysis (analyse simulation runs)
6. Parameter tuning (learning rate, explore/exploit, discounts, function approximation, state representation)

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Education is the next step

Why? We need to train people to know how to
apply our technology to ensure adoption.

Facilitate use of agent-oriented paradigm:
• Created and make available assignments and

teaching materials
• Make tutorial materials widely available.

Teach the agent-oriented mind-set

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Multi-Agent Systems Project

Project Multi-Agent Systems:
CTF Competition in UT2004

• Control a team of bots by means
of a multi-agent system.

• Compete at the end of the project.

Course Multi-Agent Systems:
Learn to program a multi-agent system

Develop logic-based agents programs:
• Apply reasoning technology (Prolog)
• Write agent programs (GOAL)
• Hands-on experience by various

programming assignments.

Create fun assignments and projects! (UT3, competition)

Koen Hindriks Twenty Years of Engineering MAS Koen Hindriks In Control of Autonomous Decision Systems

Summary

• AOP: Programming with Mental States

• KRT: Enable flexible choice of KRT

• AI: Extend by integrating AI techniques

• Towards programming with cognitive modules

• Teaching the cognitive programming stance.

	In Control of�Autonomous Decision Systems
	Outline
	First Step: Agent Programming
	The Shaping of�the Agent-Oriented Mindset
	Engineering Approaches?
	Illustrative Architecture: InteRRaP
	Evolution of Programming
	Programming with Mental States
	Many Agent Programming Languages
	How are these APLs related?
	Blocks World Toy Example�
	The Blocks World
	Representing the Initial State
	Domain Knowledge
	Representing the Goal State
	Mental State of Agent
	Inspecting the Belief Base
	Combining Beliefs and Goals
	Actions Change the Environment…
	Selecting Actions: Action Rules
	Underspecified Programs
	An Agent is a Set of Modules
	Example Agent Program
	An Agent is a Set of Modules
	A Tooling Perspective on Agents
	Second Step: Building on Top of KRTs
	No Commitment to KRT
	Layered Language
	Semantic Abstraction of KRT
	Mental State
	Mental State Conditions
	KRT Interface
	Interface: Language Abstraction
	Interface: Functional Support
	Embedded KR Languages
	Agent Program using Prolog
	From Prolog to PDDL (1/4)
	From Prolog to PDDL (2/4)
	From Prolog to PDDL (3/4)
	From Prolog to PDDL (4/4)
	Future Work
	Third Step: AI Programming
	AI Programs
	Increasing Demand for AI
	The Next Generation AI Engineers
	The Next Generation AI Engineers
	A New AI Programming Language
	Cognitive Modules as Building Blocks
	Programming with Cognitive Modules
	Cognitive Modules and Planning
	An Example:�Integrating Reinforcement Learning (RL)
	Education is the next step
	Multi-Agent Systems Project
	Summary

